A Unified Approach to Computing Real and Complex Zeros of Zero-dimensional Ideals

نویسندگان

  • JEAN BERNARD LASSERRE
  • MONIQUE LAURENT
  • PHILIPP ROSTALSKI
چکیده

In this paper we propose a unified methodology for computing the set VK(I) of complex (K = C) or real (K = R) roots of an ideal I ⊆ R[x], assuming VK(I) is finite. We show how moment matrices, defined in terms of a given set of generators of the ideal I, can be used to (numerically) find not only the real variety VR(I), as shown in the authors’ previous work, but also the complex variety VC(I), thus leading to a unified treatment of the algebraic and real algebraic problems. In contrast to the real algebraic version of the algorithm, the complex analogue only uses basic numerical linear algebra because it does not require positive semidefiniteness of the moment matrix and so avoids semidefinite programming techniques. The links between these algorithms and other numerical algebraic methods are outlined and their stopping criteria are related.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Unified Methodology for Real and Complex Zeros of Zero-dimensional Ideals

In this paper we propose a unified methodology for computing the set VK(I) of complex (K = C) or real (K = R) roots of an ideal I ⊆ R[x], assuming VK(I) is finite. We show how moment matrices, defined in terms of a given set of generators of the ideal I, can be used to (numerically) find not only the real variety VR(I), as shown in the authors’ previous work, but also the complex variety VC(I),...

متن کامل

Analysis of High-order Approximations by Spectral Interpolation Applied to One- and Two-dimensional Finite Element Method

The implementation of high-order (spectral) approximations associated with FEM is an approach to overcome the difficulties encountered in the numerical analysis of complex problems. This paper proposes the use of the spectral finite element method, originally developed for computational fluid dynamics problems, to achieve improved solutions for these types of problems. Here, the interpolation n...

متن کامل

Zero sets in pointfree topology and strongly $z$-ideals

In this paper a particular case of z-ideals, called strongly z-ideal, is defined by introducing zero sets in pointfree topology. We study strongly z-ideals, their relation with z-ideals and the role of spatiality in this relation. For strongly z-ideals, we analyze prime ideals using the concept of zero sets. Moreover, it is proven that the intersection of all zero sets of a prime ideal of C(L),...

متن کامل

Independent Sets from an Algebraic Perspective

In this paper, we study the basic problem of counting independent sets in a graph and, in particular, the problem of counting antichains in a finite poset, from an algebraic perspective. We show that neither independence polynomials of bipartite Cohen-Macaulay graphs nor Hilbert series of initial ideals of radical zero-dimensional complete intersections ideals, can be evaluated in polynomial ti...

متن کامل

Comparison of MLP NN Approach with PCA and ICA for Extraction of Hidden Regulatory Signals in Biological Networks

The biologists now face with the masses of high dimensional datasets generated from various high-throughput technologies, which are outputs of complex inter-connected biological networks at different levels driven by a number of hidden regulatory signals. So far, many computational and statistical methods such as PCA and ICA have been employed for computing low-dimensional or hidden represe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007